ENVIRONMENTAL PRODUCT DECLARATION

In accordance with ISO 14025 ISO 21930 EN 15804

Owner of the declaration Publisher Declaration number Issue date Blix Datagulv AS
The Norwegian EPD Foundation
NEPD00293E
15.12.2014
15.12.2019

Gammabox/Gammapac panel for use as raised floor

Product

Valid to

Blix Datagulv AS
Owner of the declaration

General information

Product

Gammabox/Gammapac panel for use as raised floor

Owner of the declaration

Blix Datagulv AS

Contact person: Neil Johnsen Phone: 22272760

post@datagulv.no e-mail:

Program holder

The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo

Phone: +47 23 08 80 00 e-mail: post@epd-norge.no Manufacturer

Gamma Industries

Declaration number:

NEPD00293E

Place of production:

Formerie, France

This declaration is based on Product Category Rules:

CEN Standard EN 15804 serve as core PCR PCR: NPCR 010 rev1 Building boards 2013

This PCR mainly concerns products with the same function, albeit not necessarily with the same materials, as Alucast

Management system:

ISO 9001 (Gamma Industries)

Declared unit:

Declared unit with option:

NO 997 045 335 MVA (Blix Datagulv AS)

Issue date

Org. No:

15.12.2014

Valid to

15.12.2019

Functional unit:

1 m² of installed Gammabox/Gammapac panel used as raised floor, including proper maintenance and repair during the reference service life

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

The EPD has been worked out by:

Fredrik Moltu Johnsen and Kari-Anne Lyng Østfoldforskning AS

Ostfoldforskning

Verification:

Independent verification of data, other environmental information and EPD has been carried out in accordance with ISO14025, 8.1.3 and 8.1.4

externally <a>\textsize

internally [

Senior Research Scientist, Mie Vold (Independent verifier approved by EPD Norway) Year of study: 2014

Approved

Dagfinn Malnes Managing Director of EPD-Norway

Key environmental indicators	Unit	Cradle to gate A1 - A3
Global warming	kg CO ₂ -eqv	17 †
Energy use	MJ	712
Dangerous substances		0

Transport ***** (A4)
13
198
0

Installation ****** (A5)
5
95
0

† An extra negative emission of 39 kg of CO2 formally belongs to A1 due to CO2 uptake during tree growth. This uptake is re-emitted to air in the C3 stage (incineration). This uptake is not included in the table, because the resultant negative emission score for A1 - A3 only makes sense in the context of the full life cycle.

No substances appearing on the Candidate list 16.06.14 and the Norwegian priority list have been added to the product.

Transport from production site to central warehouse in Norway

A4 and A5, but not A1-A3, include the raw materials of the pedestals and stringers used for raising the floor

Product

Product description:

Gammabox and Gammapac are wood-resin based panels for use in raised floors. Delivered with perimiter trim of PVC or ABS, and finish of choice (such as PVC or laminates). Bottom plate: 0.5 mm thick, galv. steel.

Product specification

Cf. the data sheets of the products (see Bibliography) Sustainably sourced wood (PEFC certified)

Materials	kg / m2	%
Wood-resin board (30mm)	21.18	80.4%
Bottom steel tray	3.45	13.1%
Perimiter trim (PVC, G.box)	0.460	1.7%
Finish/laminate (PVC assumed)	1,26	4.8%
Total	26.35	100.0%
Pedestals and stringers (installation phase; 700mm)	7.43	

Technical data:

Weight: 26.3 kg/m² (34 kg/m² as raised floor)

Available with finishes; EPD assumes PVC. Floor height: 110mm - 1500mm; EPD assumes 700mm - see sensitivity analysis below.

Wooden core height: 30-38 mm; EPD assumes 30 mm Compliance with European Standard NF EN 12825

Reference service life:

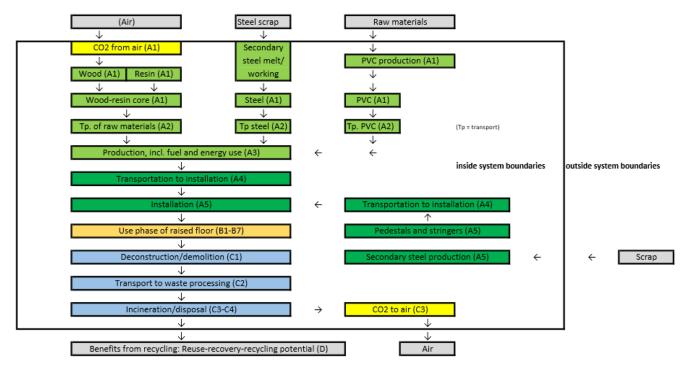
20 years

Production process:

Wood-resin board, tray, perimeter trim and laminate are cut and tightly fit together.

Market:

Norway/Nordic countries


LCA: Calculation rules

Functional unit:

1 m2 of installed Gammabox/Gammapac panel used as as raised floor, including proper maintenance and repair during the reference service

System boundary:

Flowsheet - see below.

Specific data for products and mass flows were supplied by the producer in 2014. Estimates related to the product-specific data are generally based on data from the 2010s. Generic data sources: Ecoinvent 2.2/SimaPro software (generic). Ecoinvent 2.2 processes are created 2003-2007. Upstream data for raw materials are significant for the LCA results in this study; these are modelled using Ecoinvent processes. 50 km transportation from Blix to installation is assumed. For longer transportation, please consult the sensitivity analysis below. A sensitivity analysis is moreover provided for different heights of the raised floor, which can also significantly influence results.

All major raw materials and all the essential energy is included. The production process for raw materials and energy flows that are included with very small amounts (<1%) are not included. This cut-off rule does not apply for hazardous materials and substances.

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house production is allocated equally among all products through mass allocation. Effects of primary production of recycled materials allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Transport from production place to user (A4)

Туре	Capacity utilisation (incl. return)	Type of vehicle	Distance km	Fuel/Energy	Value
	%			consumption	(I/t)
Truck	Fleet average (CH/EUR)	lorry 20-28 t	1850	N/A I/tkm	N/A
Railway				kWh/tkm	
Boat				l/tkm	

Specific data for the A2 and A4 stages: Distance and type of vehicle (lorry). Generic/assumed: 20-28t (Ecoinvent 2,2)

Installation in the building (A5)

	Unit	Value
Auxiliary	kg	0
Water consumption	m^3	0
Electricity consumption	kWh	0
Other energy carriers	MJ	0
Material loss	kg	0
Output materials from waste treatment	kg	0
Dust in the air	kg	0

Use (B1)

000 (2.)		
	Unit	Value

Includes the material for the steel pedestals and stringers.

Emissions from the use of the raised floor.

Maintenance (B2)/Repair (B3)

	Unit	Value
Maintenance cycle*	RSL/yr	20
Auxiliary	kg	0
Other resources	kg	0
Water consumption	m ³	0
Electricity consumption	kWh	0
Other energy carriers	MJ	0
Material loss	kg	0

Replacement (B4)/Refurbishment (B5)

	Unit	Value
Replacement cycle*	RSL/yr	20
Electricity consumption	kWh	0
Replacement of worn parts		

^{*} Number or RSL (Reference Service Life)

No maintenance assumed. Need for repair assumed to emerge during installation phase (A5).

Operational energy (B6) and water consumption (B7)

- por an error 97 (= e) arra rraiter e erroamp	(-	-,
	Unit	Value
Water consumption	m^3	0
Electricity consumption	kWh	0
Other energy carriers	MJ	0
Power output of equipment	kW	0

No emissions have been identified during the use phase (B1-B7)

End of Life (C1, C3, C4)

	Unit	Value
Hazardous waste disposed	kg	0
Collected as mixed construction waste	kg	0
Reuse	kg	0
Recycling	kg	7.43
Energy recovery	kg	26.35
To landfill	kg	0

C3 does not include emissions from energy recovery, but includes biogenic CO2 released back to atmosphere

Transport to waste processing (C2)

manoport to made p	(0=)				
Туре	Capacity utilisation (incl. return)	Type of vehicle	Distance km	Fuel/Energy	Value
	%			consumption	(I/t)
Truck	Fleet average	lorry 20-28 t	50	N/A I/tkm	N/A
Railway				kWh/tkm	
Boat				l/tkm	

Assumptions: Transport by lorry 20-28 t (CH, Ecoinvent 2,2); distance: 50 km

LCA: Results

The performed LCA is a cradle to grave analysis, i.e. all stages A1-C4 are included.

Syst	em bounda	ries (X=include	ed, MND=module not declared,	MNR=module not relevant)

Pro	duct st	age		struction ition stage		Use stage End of life stage								End of life stage				
Raw materials	Transport	Manufacturing	Transport	Construction installation stage	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal			
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4			
Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			

Beyond the system boundaries
Reuse-Recovery- Recycling-potential
D
MND

Environme	ental impact																
Parameter	Unit	A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C 3	C4
GWP	kg CO ₂ -eqv	-25	1,8	0,92	13	5,3	0	0	0	0	0	0	0	0	0,33	39	0
ODP	kg CFC11-eqv	1,20E-06	2,92E-07	9,51E-08	2,10E-06	4,62E-07	0	0	0	0	0	0	0	0	5,30E-08	0	0
POCP	kg C ₂ H ₄ -eqv	3,82E-03	3,46E-04	1,20E-04	2,49E-03	1,73E-03	0	0	0	0	0	0	0	0	6,28E-05	0	0
AP	kg SO ₂ -eqv	5,32E-02	9,88E-03	2,71E-03	7,10E-02	2,08E-02	0	0	0	0	0	0	0	0	1,79E-03	0	0
EP	kg PO ₄ 3eqv	7,31E-03	2,58E-03	4,20E-04	1,55E-02	3,24E-03	0	0	0	0	0	0	0	0	3,90E-04	0	0
ADPM	kg Sb-eqv	3,77E-05	4,26E-06	1,94E-07	3,54E-05	8,90E-06	0	0	0	0	0	0	0	0	8,93E-07	0	0
ADPE	MJ	272	26	12	190	79	0	0	0	0	0	0	0	0	4,8	0	0

GWP Global warming potential; **ODP** Depletion potential of the stratospheric ozone layer; **POCP** Formation potential of tropospheric photochemical oxidants; **AP** Acidification potential of land and water; **EP** Eutrophication potential; **ADPM** Abiotic depletion potential for non fossil resources; **ADPE** Abiotic depletion potential for fossil resources

The product's raw materials take up 39 kg CO2 from air in A1 (hence negative GWP in A1). The 39 kgs are re-emitted in C3.

Resource	use																
Parameter	Unit	A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4
RPEE	MJ	438	0,35	0,65	2,6	4,1	0	0	0	0	0	0	0	0	6,60E-02	0	0
RPEM	MJ	308	3,39E-02	5,19E-02	0,23	0,71	0	0	0	0	0	0	0	0	5,85E-03	0	0
TPE	MJ	745	0,38	0,70	2,8	4,8	0	0	0	0	0	0	0	0	7,18E-02	0	0
NRPE	MJ	234	27	12	195	91	0	0	0	0	0	0	0	0	4,9	0	0
NRPM	MJ	55	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TRPE	MJ	289	27	12	195	91	0	0	0	0	0	0	0	0	4,9	0	0
SM	kg	25	1,006E-07	0	0	7,4	0	0	0	0	0	0	0	0	0	0	0
RSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
W	m ³	34	5,5	22	0	0	0	0	0	0	0	0	0	0	0	0	0

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier; NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water

End of life	- Waste																
Parameter	Unit	A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	B6	B7	C1	C2	C3	C4
HW	kg	4,65E-03	2,57E-05	1,06E-05	5,49E-04	2,24E-04	0	0	0	0	0	0	0	0	1,38E-05	0	0
NHW	kg	3,8	0,26	6,92E-02	2,4	2,8	0	0	0	0	0	0	0	0	5,93E-02	32	0
RW	kg	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA

HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed

End of life	- Output flow																
Parameter	Unit	A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4
CR	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MR	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7,43	0
MER	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	26,4	0
EEE	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ETE	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	67	0

CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy

Reading example: $9.0 \text{ E}-03 = 9.0 \cdot 10^{-3} = 0.009$

Sensitivity analysi	Sensitivity analysis according to pedestal/stringer height											
Pedestal height	Weight of pedestal+stringer	GWP over life cycle (A1-C4)										
110 mm (min)	1.085 kg/m2	28 kg CO2-eq										
700 mm (avg; EPD)	7.43 kg/m2	35 kg CO2-eq										
1500 mm (max)	13.22 kg/m2	42 kg CO2-eq										

The raised floors can be installed with pedestals of different heights. Differences in life cycle results are shown in the table.

The differences are due to the significant increase in material use (steel) when pedestals are higher.

Sensitivity analysis of transport of full floor (panel, pedestal and stringer) from Blix warehouse to customer

Assumption	Approximate installation location	GWP over life cycle (A1-C4)
50 km	Oslo area (EPD's default assumption)	35 kg CO2-eq
500 km	Bergen/Stavanger/Trondheim/Stockholm area	38 kg CO2-eq
1750 km	Tromsø area	46 kg CO2-eq

The EPD assumes 50 km transport from Blix Datagulv AS's central warehouse to the installation site.

The table shows how results change with longer transportation distances, primarily due to additional fuel use.

Additional Norwegian requirements

Dangerous substances

No substances appearing on the Candidate list 16.06.14 and the Norwegian priority list of 11.11.2013 have been added to the product.

Electricity

The electricity at the production site is modelled as a French electricity mix, according to the Ecoinvent 2,2 process "Electricity, high voltage, production FR, at grid/FR U."

Greenhouse gas emissions: 0.0903 kg CO₂ - eqv/MJ

Transport

Transport from production site to central warehouse in Norway is: 1800 km

Carbon footprint

Carbon footprint has not been worked out for the product.

Indoor environment

The product meets the requirements for low emissions (M1) according to EN15251: 2007 Appendix E.

Bibliography ISO 14025:2006 Environmental labels and declarations - Type III environmental declarations - Principles and procedures ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines EN 15804:2012+A1:2013 Sustainability of construction works - Environmental product declaration - Core rules for the product category of construction products ISO 21930:2007 Sustainability in building construction - Environmental declaration of building products LCI/LCA report Johnsen, FM & Lyng, K-A (2014) Gammabox/Gammapac panel for use as raised floor. Østfoldforskning report no. OR.26.14. Confidential. **PCR** NPCR 010 rev1 Building boards 2013, EPD Norge Available from http://gamma-industries.com/ Gammabox product sheet Gammapac product sheet Available from http://gamma-industries.com/ ISO 9001 documentation Quality Organisation Letter. Submitted from Gamma to EPD practitioner 26.09.2014 **REACH Candidate List** Date: 16.06.2014 Gammabox emission FICHE DE DONNEES ENVIRONNEMENTALES DES

FICHE DE DONNEES ENVIRONNEMENTALES DES

Available from http://gamma-industries.com/

Gamma Industries Raised access floors, 10/03/2009, 20pp

MATERIAUX ET PRODUITS. DALLES GAMMABOX 30-38 mm. Gamma Emissions profile.

MATERIAUX ET PRODUITS. DALLES GAMMAPAC 30/38 mm + stratifié. Emissions profile

profile

profile

Gammapac emission

Gamma brochure

	Program holder and publisher	Phone:	+47 23 08 80 00
epa-norge.no	The Norwegian EPD Foundation		
epd-norge.no The Norwegian EPD Foundation	Post Box 5250 Majorstuen, 0303 Oslo	e-mail:	post@epd-norge.no
8	Norway	web	www.epd-norge.no
	Owner of the declaration	Phone:	+47 22272760
BLIX DATAGULV	Blix Datagulv AS		
BLIX DAIAGULV	Hamangskogen 88	e-mail:	post@datagulv.no
	NO-1338 Sandvika, Norway	web	www.datagulv.no
	Author of the Life Cycle Assessment	Phone:	+47 69351100
Ostfoldforskning	Østfoldforskning AS		
U Stroidforskning	Stadion 4	e-mail:	post@ostfoldforskning.no
	NO-1671 Kråkerøy, Norway	web	www.ostfoldforskning.no